Variable Selection for Latent Class Analysis with Application to Low Back Pain Diagnosis

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Authors Michael Fop, Keith Smart, Thomas Brendan Murphy
Journal/Conference Name Annals of Applied Statistics.
Paper Category
Paper Abstract The identification of most relevant clinical criteria related to low back pain disorders may aid the evaluation of the nature of pain suffered in a way that usefully informs patient assessment and treatment. Data concerning low back pain can be of categorical nature, in the form of a check-list in which each item denotes presence or absence of a clinical condition. Latent class analysis is a model-based clustering method for multivariate categorical responses, which can be applied to such data for a preliminary diagnosis of the type of pain. In this work, we propose a variable selection method for latent class analysis applied to the selection of the most useful variables in detecting the group structure in the data. The method is based on the comparison of two different models and allows the discarding of those variables with no group information and those variables carrying the same information as the already selected ones. We consider a swap-stepwise algorithm where at each step the models are compared through an approximation to their Bayes factor. The method is applied to the selection of the clinical criteria most useful for the clustering of patients in different classes. It is shown to perform a parsimonious variable selection and to give a clustering performance comparable to the expert-based classification of patients into three classes of pain.
Date of publication 2017
Code Programming Language R

Copyright Researcher 2022