Unsupervised and Semi-supervised Learning via L1-norm Graph
View Researcher II's Other CodesDisclaimer: “The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).”
Please contact us in case of a broken link from here
Authors | Feiping Nie, Hua Wang, Heng Huang, Chris Ding |
Journal/Conference Name | The 13th International Conference on Computer Vision (ICCV) |
Paper Category | Computer Science |
Paper Abstract | In this paper, we propose a novel ℓ1-norm graph model to perform unsupervised and semi-supervised learning methods. Instead of minimizing the ℓ2-norm of spectral embedding as traditional graph based learning methods, our new graph learning model minimizes the ℓ1-norm of spectral embedding with well motivation. The sparsity produced by the ℓ1-norm minimization results in the solutions with much clearer cluster structures, which are suitable for both image clustering and classification tasks. We introduce a new efficient iterative algorithm to solve the ℓ1-norm of spectral embedding minimization problem, and prove the convergence of the algorithm. More specifically, our algorithm adaptively re-weight the original weights of graph to discover clearer cluster structure. Experimental results on both toy data and real image data sets show the effectiveness and advantages of our proposed method. |
Date of publication | 2011 |
Code Programming Language | MATLAB |
Comment |