Trust Prediction via Aggregating Heterogeneous Social Networks

View Researcher II's Other Codes

Disclaimer: “The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).”

Please contact us in case of a broken link from here

Authors Jin Huang, Feiping Nie, Heng Huang, Yicheng Tu
Journal/Conference Name The 21st ACM International Conference on Information and Knowledge Management (CIKM)
Paper Category
Paper Abstract Along with the increasing popularity of social web sites, users rely more on the trustworthiness information for many online activities among users. However, such social network data often suffers from severe data sparsity and are not able to provide users with enough information. Therefore, trust prediction has emerged as an important topic in social network research. Traditional approaches explore the topology of trust graph. Previous research in sociology and our life experience suggest that people who are in the same social circle often exhibit similar behavior and tastes. Such ancillary information, is often accessible and therefore could potentially help the trust prediction. In this paper, we address the link prediction problem by aggregating heterogeneous social networks and propose a novel joint manifold factorization (JMF) method. Our new joint learning model explores the user group level similarity between correlated graphs and simultaneously learns the individual graph structure, therefore the shared structures and patterns from multiple social networks can be utilized to enhance the prediction tasks. As a result, we not only improve the trust prediction in the target graph, but also facilitate other information retrieval tasks in the auxiliary graphs. To optimize the objective function, we break down the proposed objective function into several manageable sub-problems, then further establish the theoretical convergence with the aid of auxiliary function. Extensive experiments were conducted on real world data sets and all empirical results demonstrated the effectiveness of our method.
Date of publication 2012
Code Programming Language MATLAB

Copyright Researcher II 2022