Towards Photographic Image Manipulation with Balanced Growing of Generative Autoencoders

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Ari Heljakka, Arno Solin, Juho Kannala
Journal/Conference Name Proceedings - 2020 IEEE Winter Conference on Applications of Computer Vision, WACV 2020
Paper Category
Paper Abstract We present a generative autoencoder that provides fast encoding, faithful reconstructions (eg. retaining the identity of a face), sharp generated/reconstructed samples in high resolutions, and a well-structured latent space that supports semantic manipulation of the inputs. There are no current autoencoder or GAN models that satisfactorily achieve all of these. We build on the progressively growing autoencoder model PIONEER, for which we completely alter the training dynamics based on a careful analysis of recently introduced normalization schemes. We show significantly improved visual and quantitative results for face identity conservation in CelebAHQ. Our model achieves state-of-the-art disentanglement of latent space, both quantitatively and via realistic image attribute manipulations. On the LSUN Bedrooms dataset, we improve the disentanglement performance of the vanilla PIONEER, despite having a simpler model. Overall, our results indicate that the PIONEER networks provide a way towards photorealistic face manipulation.
Date of publication 2019
Code Programming Language Jupyter Notebook

Copyright Researcher 2022