Towards Large yet Imperceptible Adversarial Image Perturbations with Perceptual Color Distance

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Zhuoran Liu, Zhengyu Zhao, Martha Larson
Journal/Conference Name CVPR 2020 6
Paper Category
Paper Abstract The success of image perturbations that are designed to fool image classifier is assessed in terms of both adversarial effect and visual imperceptibility. The conventional assumption on imperceptibility is that perturbations should strive for tight $L_p$-norm bounds in RGB space. In this work, we drop this assumption by pursuing an approach that exploits human color perception, and more specifically, minimizing perturbation size with respect to perceptual color distance. Our first approach, Perceptual Color distance C&W (PerC-C&W), extends the widely-used C&W approach and produces larger RGB perturbations. PerC-C&W is able to maintain adversarial strength, while contributing to imperceptibility. Our second approach, Perceptual Color distance Alternating Loss (PerC-AL), achieves the same outcome, but does so more efficiently by alternating between the classification loss and perceptual color difference when updating perturbations. Experimental evaluation shows PerC approaches outperform conventional $L_p$ approaches in terms of robustness and transferability, and also demonstrates that the PerC distance can provide added value on top of existing structure-based methods to creating image perturbations.
Date of publication 2019
Code Programming Language Python

Copyright Researcher 2022