Threshold Value Estimation Using Adaptive Two-Stage Plans in R

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Authors Shawn Mankad, George Michailidis, Moulinath Banerjee
Journal/Conference Name Journal of Statistical Software
Paper Category
Paper Abstract This paper introduces the R package twostageTE for estimation of an inverse regression function at a given point when one can sample an explanatory covariate at different values and measure the corresponding responses. The package implements a number of nonparametric methods for budget constrained threshold value estimation. Specifically, it contains methods for classical one-stage designs and also adaptive two-stage designs, which have been shown to yield more efficient and accurate results. A major advantage of the methods in package twostageTE is that threshold value estimation is performed without penalization or kernel smoothing, and hence, avoids the well-known problems of choosing the corresponding tuning parameter (regularization, bandwidth). The user can easily perform a two-stage analysis with twostageTE by (i) identifying the second stage sampling region from an initial sample, and (ii) computing various types of confidence intervals to ensure a robust analysis. The package twostageTE is illustrated through simulated examples.
Date of publication 2015
Code Programming Language R

Copyright Researcher 2022