The ecohydrological context of drought and classification of plant responses

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Xue Feng, David D. Sckerly, Todd E. Dawson, Stefano Manzoni, Rob P.Skelton, Giulia Vico, Sally E. Thompson
Journal/Conference Name Ecology Letters
Paper Category , ,
Paper Abstract Many recent studies on drought-induced vegetation mortality have explored how plant functional traits, and classifications of such traits along axes of, for example, isohydry–anisohydry, might contribute to predicting drought survival and recovery. As these studies proliferate, the consistency and predictive value of such classifications need to be carefully examined. Here, we outline the basis for a systematic classification of plant drought responses that accounts for both environmental conditions and functional traits. We use non-dimensional analysis to integrate plant traits and metrics of environmental variation into groups that can be associated with alternative drought stress pathways (hydraulic failure and carbon limitation), and demonstrate that these groupings predict physiological drought outcomes using both synthetic and measured data. In doing so, we aim to untangle some confounding effects of environment and trait variations that undermine current classification schemes, advocate for more careful treatment of the environmental context within which plants experience and respond to drought, and outline a pathway towards a general classification of drought vulnerability.
Date of publication 2018
Code Programming Language Python
Comment

Copyright Researcher 2022