The characteristic function of rough Heston model
View Researcher's Other CodesDisclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).
Please contact us in case of a broken link from here
Authors | Omar El Euch, Mathieu Rosenbaum |
Journal/Conference Name | Mathematical Finance |
Paper Category | Econometrics and Finance (miscellaneous), Economics |
Paper Abstract | It has been recently shown that rough volatility models, where the volatility is driven by a fractional Brownian motion with small Hurst parameter, provide very relevant dynamics in order to reproduce the behavior of both historical and implied volatilities. However, due to the non‐Markovian nature of the fractional Brownian motion, they raise new issues when it comes to derivatives pricing. Using an original link between nearly unstable Hawkes processes and fractional volatility models, we compute the characteristic function of the log‐price in rough Heston models. In the classical Heston model, the characteristic function is expressed in terms of the solution of a Riccati equation. Here, we show that rough Heston models exhibit quite a similar structure, the Riccati equation being replaced by a fractional Riccati equation. |
Date of publication | 2019 |
Code Programming Language | MATLAB |
Comment |