Spectrum-Adapted Tight Graph Wavelet and Vertex-Frequency Frames

View Researcher's Other Codes

MATLAB code for the paper: “Spectrum-Adapted Tight Graph Wavelet and Vertex-Frequency Frames”.

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors David I Shuman, Christoph Wiesmeyr, Nicki Holighaus, and Pierre Vandergheynst
Journal/Conference Name IEEE Transactions on Signal Processing
Paper Category
Paper Abstract We consider the problem of designing spectral graph filters for the construction of dictionaries of atoms that can be used to efficiently represent signals residing on weighted graphs. While the filters used in previous spectral graph wavelet constructions are only adapted to the length of the spectrum, the filters proposed in this paper are adapted to the distribution of graph Laplacian eigenvalues, and therefore lead to atoms with better discriminatory power. Our approach is to first characterize a family of systems of uniformly translated kernels in the graph spectral domain that give rise to tight frames of atoms generated via generalized translation on the graph. We then warp the uniform translates with a function that approximates the cumulative spectral density function of the graph Laplacian eigenvalues. We use this approach to construct computationally efficient, spectrum-adapted, tight vertex-frequency and graph wavelet frames. We give numerous examples of the resulting spectrum-adapted graph filters, and also present an illustrative example of vertex-frequency analysis using the proposed construction.
Date of publication 2015
Code Programming Language MATLAB

Copyright Researcher 2022