Sparse Variation Dictionary Learning for Face Recognition with A Single Training Sample Per Person

View Researcher's Other Codes

MATLAB code for the paper: “Sparse Variation Dictionary Learning for Face Recognition with A Single Training Sample Per Person”.

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Meng Yang, Luc Van Gool and Lei Zhang
Journal/Conference Name 2013 International Conference on Computer Vision (ICCV 2013)
Paper Category
Paper Abstract Face recognition (FR) with a single training sample per person (STSPP) is a very challenging problem due to the lack of information to predict the variations in the query sample. Sparse representation based classification has shown interesting results in robust FR; however, its performance will deteriorate much for FR with STSPP. To address this issue, in this paper we learn a sparse variation dictionary from a generic training set to improve the query sample representation by STSPP. Instead of learning from the generic training set independently with respect to the gallery set, the proposed sparse variation dictionary learning (SVDL) method is adaptive to the gallery set by jointly learning a projection to connect the generic training set with the gallery set. The learnt sparse variation dictionary can be easily integrated into the framework of sparse representation based classification so that various variations in face images, including illumination, expression, occlusion, pose, etc., can be better handled. Experiments on the large-scale CMU Multi-PIE, FRGC and LFW databases demonstrate the promising performance of SVDL on FR with STSPP.
Date of publication 2013
Code Programming Language MATLAB

Copyright Researcher 2022