Sparse Reconstruction by Separable Approximation

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Stephen J. Wright, R. Nowak, Mário A. T. Figueiredo
Journal/Conference Name IEEE Transactions on Signal Processing
Paper Category
Paper Abstract Finding sparse approximate solutions to large underdetermined linear systems of equations is a common problem in signal/image processing and statistics. Basis pursuit, the least absolute shrinkage and selection operator (LASSO), wavelet-based deconvolution and reconstruction, and compressed sensing (CS) are a few well-known areas in which problems of this type appear. One standard approach is to minimize an objective function that includes a quadratic ( lscr 2 ) error term added to a sparsity-inducing (usually lscr 1 ) regularizater. We present an algorithmic framework for the more general problem of minimizing the sum of a smooth convex function and a nonsmooth, possibly nonconvex regularizer. We propose iterative methods in which each step is obtained by solving an optimization subproblem involving a quadratic term with diagonal Hessian (i.e., separable in the unknowns) plus the original sparsity-inducing regularizer; our approach is suitable for cases in which this subproblem can be solved much more rapidly than the original problem. Under mild conditions (namely convexity of the regularizer), we prove convergence of the proposed iterative algorithm to a minimum of the objective function. In addition to solving the standard lscr 2 -lscr 1 case, our framework yields efficient solution techniques for other regularizers, such as an lscr infin norm and group-separable regularizers. It also generalizes immediately to the case in which the data is complex rather than real. Experiments with CS problems show that our approach is competitive with the fastest known methods for the standard lscr 2 -lscr 1 problem, as well as being efficient on problems with other separable regularization terms.
Date of publication 2018
Code Programming Language Jupyter Notebook

Copyright Researcher 2022