Shrinkage Algorithms for MMSE Covariance Estimation

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Yilun Chen, A. Wiesel, Yonina C. Eldar, A. Hero
Journal/Conference Name I
Paper Category
Paper Abstract We address covariance estimation in the sense of minimum mean-squared error (MMSE) when the samples are Gaussian distributed. Specifically, we consider shrinkage methods which are suitable for high dimensional problems with a small number of samples (large p small n). First, we improve on the Ledoit-Wolf (LW) method by conditioning on a sufficient statistic. By the Rao-Blackwell theorem, this yields a new estimator called RBLW, whose mean-squared error dominates that of LW for Gaussian variables. Second, to further reduce the estimation error, we propose an iterative approach which approximates the clairvoyant shrinkage estimator. Convergence of this iterative method is established and a closed form expression for the limit is determined, which is referred to as the oracle approximating shrinkage (OAS) estimator. Both RBLW and OAS estimators have simple expressions and are easily implemented. Although the two methods are developed from different perspectives, their structure is identical up to specified constants. The RBLW estimator provably dominates the LW method for Gaussian samples. Numerical simulations demonstrate that the OAS approach can perform even better than RBLW, especially when n is much less than p . We also demonstrate the performance of these techniques in the context of adaptive beamforming.
Date of publication 2010
Code Programming Language Julia

Copyright Researcher 2022