Semantic Co-segmentation in Videos

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Authors Yi-Hsuan Tsai, Guangyu Zhong, Ming-Hsuan Yang
Journal/Conference Name ECCV
Paper Category
Paper Abstract Discovering and segmenting objects in videos is a challenging task due to large variations of objects in appearances, deformed shapes and cluttered backgrounds. In this paper, we propose to segment objects and understand their visual semantics from a collection of videos that link to each other, which we refer to as semantic co-segmentation. Without any prior knowledge on videos, we first extract semantic objects and utilize a tracking-based approach to generate multiple object-like tracklets across the video. Each tracklet maintains temporally connected segments and is associated with a predicted category. To exploit rich information from other videos, we collect tracklets that are assigned to the same category from all videos, and co-select tracklets that belong to true objects by solving a submodular function. This function accounts for object properties such as appearances, shapes and motions, and hence facilitates the co-segmentation process. Experiments on three video object segmentation datasets show that the proposed algorithm performs favorably against the other state-of-the-art methods.
Date of publication 2016
Code Programming Language MATLAB

Copyright Researcher 2022