Salient Object Detection via Multiple Instance Learning

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Authors Fang Huang, Jinqing Qi, Huchuan Lu, Lihe Zhang, Xiang Ruan
Journal/Conference Name IEEE Transactions on Image Processing
Paper Category
Paper Abstract Object proposals are a series of candidate segments containing the objects of interest, which are taken as preprocessing and widely applied in various vision tasks. However, most of existing saliency approaches only utilizes the proposals to compute a location prior. In this paper, we naturally take the proposals as the bags of instances of multiple instances learning (MIL), where the instances are the superpixels contained in the proposals, and formulate saliency detection problem as an MIL task (i.e., predict the labels of instances using the classifier in the MIL framework). This method allows some flexibility in finding a decision boundary based on the bag-level representations and can identify salient superpixels from ambiguous proposals. In addition, we introduce the MIL to an optimization mechanism, which iteratively updates training bags from easy to complex ones to learn a strong model. The significant improvement can be consistently achieved when applying the optimization model to existing saliency approaches. Extensive experiments demonstrate that the proposed algorithms perform favorably against the state-of-art saliency detection methods on several benchmark data sets.
Date of publication 2017
Code Programming Language MATLAB

Copyright Researcher 2022