Saliency Detection via Cellular Automata

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Authors Yao Qin, Huchuan Lu, Yiqun Xu, Junyu Wang
Journal/Conference Name IEEE Conference on Computer Vision and Pattern…
Paper Category
Paper Abstract In this paper, we introduce Cellular Automata-a dynamic evolution model to intuitively detect the salient object. First, we construct a background-based map using color and space contrast with the clustered boundary seeds. Then, a novel propagation mechanism dependent on Cellular Automata is proposed to exploit the intrinsic relevance of similar regions through interactions with neighbors. Impact factor matrix and coherence matrix are constructed to balance the influential power towards each cell's next state. The saliency values of all cells will be renovated simultaneously according to the proposed updating rule. It's surprising to find out that parallel evolution can improve all the existing methods to a similar level regardless of their original results. Finally, we present an integration algorithm in the Bayesian framework to take advantage of multiple saliency maps. Extensive experiments on six public datasets demonstrate that the proposed algorithm outperforms state-of-the-art methods.
Date of publication 2015
Code Programming Language MATLAB

Copyright Researcher 2022