Quantifying the Role of Snowmelt in Stream Discharge in an Alaskan Watershed: An Analysis Using a Spatially Distributed Surface Hydrology Model
View Researcher's Other CodesDisclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).
Please contact us in case of a broken link from here
Authors | Chang Liao, Qianlai Zhuang |
Journal/Conference Name | Arctic, Antarctic, and Alpine Research |
Paper Category | Behavior and Systematics, Ecology, Evolution |
Paper Abstract | This study uses a spatially distributed surface hydrology model to investigate the role of snowmelt in stream discharge for the Tanana Flats Basin in interior Alaska. The Parameter ESTimation code is used to calibrate the model with observed stream discharge data. The model was further evaluated using remote sensing-based snow cover product and in situ snowpack water equivalent (SWE) observations. A 36 year (1980–2015) U.S. Geological Survey Precipitation-Runoff Modeling System simulation shows (1) the monthly stream discharge from the Tanana Flats Basin in April decreased by 44%; (2) snow cover area at high altitudes (above 2000 m) decreased in summer, both SWE and snowmelt also decreased significantly, especially in spring; (3) the timings of snowmelt onset and ending shifted by 2 (earlier) and 5 (later) days per decade, respectively; and (4) snowmelt accounts for 40% of the annual stream discharge. This study provides a quantitative tool to investigating hydrological systems considering the impacts of snow dynamics in cold regions. This study also suggests that future warming will further decrease snow coverage, advance snow melting time, and hereafter change the stream discharge dynamics in the Arctic. |
Date of publication | 2017 |
Code Programming Language | C++ |
Comment |