Predicting to new environments: tools for visualising model behaviour and impacts on mapped distributions

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Damaris Zurell, Jane Elith, Boris Schröder
Journal/Conference Name Diversity and Distributions
Paper Category , ,
Paper Abstract Data limitations can lead to unrealistic fits of predictive species distribution models (SDMs) and spurious extrapolation to novel environments. Here, we want to draw attention to novel combinations of environmental predictors that are within the sampled range of individual predictors but are nevertheless outside the sample space. These tend to be overlooked when visualizing model behaviour. They may be a cause of differing model transferability and environmental change predictions between methods, a problem described in some studies but generally not well understood. We here use a simple simulated data example to illustrate the problem and provide new and complementary visualization techniques to explore model behaviour and predictions to novel environments. We then apply these in a more complex real-world example. Our results underscore the necessity of scrutinizing model fits, ecological theory and environmental novelty.
Date of publication 2012
Code Programming Language R

Copyright Researcher 2022