NPCirc: An R Package for Nonparametric Circular Methods

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Authors María Oliveira, Rosa M. Crujeiras, Alberto Rodríguez-Casal
Journal/Conference Name Journal of Statistical Software
Paper Category
Paper Abstract Nonparametric density and regression estimation methods for circular data are included in the R package NPCirc. Specifically, a circular kernel density estimation procedure is provided, jointly with different alternatives for choosing the smoothing parameter. In the regression setting, nonparametric estimation for circular-linear, circular-circular and linear-circular data is also possible via the adaptation of the classical Nadaraya-Watson and local linear estimators. In order to assess the significance of the features observed in the smooth curves, both for density and regression with a circular covariate and a linear response, a SiZer technique is developed for circular data, namely CircSiZer. Some data examples are also included in the package, jointly with a routine that allows generating mixtures of different circular distributions.
Date of publication 2014
Code Programming Language R

Copyright Researcher 2022