Nonnegative Spectral Clustering with Discriminative Regularization

View Researcher II's Other Codes

Disclaimer: “The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).”

Please contact us in case of a broken link from here

Authors Yi Yang, Heng Tao Shen, Feiping Nie, Rongrong Ji, Xiaofang Zhou
Journal/Conference Name The 25th AAAI Conference on Artificial Intelligence (AAAI)
Paper Category
Paper Abstract Clustering is a fundamental research topic in the field of data mining. Optimizing the objective functions of clustering algorithms, e.g. normalized cut and k-means, is an NP-hard optimization problem. Existing algorithms usually relax the elements of cluster indicator matrix from discrete values to continuous ones. Eigenvalue decomposition is then performed to obtain a relaxed continuous solution, which must be discretized. The main problem is that the signs of the relaxed continuous solution are mixed. Such results may deviate severely from the true solution, making it a nontrivial task to get the cluster labels. To address the problem, we impose an explicit nonnegative constraint for a more accurate solution during the relaxation. Besides, we additionally introduce a discriminative regularization into the objective to avoid overfitting. A new iterative approach is proposed to optimize the objective. We show that the algorithm is a general one which naturally leads to other extensions. Experiments demonstrate the effectiveness of our algorithm.
Date of publication 2011
Code Programming Language MATLAB

Copyright Researcher II 2022