Non-orthogonal multiple access for 5G: Solutions, challenges, opportunities, and future research trends

View Researcher II's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Authors Linglong Dai, Bichai Wang, Yifei Yuan, Shuangfeng Han, I Chih-Lin, Zhaocheng Wang
Journal/Conference Name IEEE Communications Magazine
Paper Category
Paper Abstract The increasing demand of mobile Internet and the Internet of Things poses challenging requirements for 5G wireless communications, such as high spectral efficiency and massive connectivity. In this article, a promising technology, non-orthogonal multiple access (NOMA), is discussed, which can address some of these challenges for 5G. Different from conventional orthogonal multiple access technologies, NOMA can accommodate much more users via nonorthogonal resource allocation. We divide existing dominant NOMA schemes into two categories: power-domain multiplexing and code-domain multiplexing, and the corresponding schemes include power-domain NOMA, multiple access with low-density spreading, sparse code multiple access, multi-user shared access, pattern division multiple access, and so on. We discuss their principles, key features, and pros/cons, and then provide a comprehensive comparison of these solutions from the perspective of spectral efficiency, system performance, receiver complexity, and so on. In addition, challenges, opportunities, and future research trends for NOMA design are highlighted to provide some insight on the potential future work for researchers in this field. Finally, to leverage different multiple access schemes including both conventional OMA and new NOMA, we propose the concept of software defined multiple access (SoDeMA), which enables adaptive configuration of available multiple access schemes to support diverse services and applications in future 5G networks.
Date of publication 2015
Code Programming Language MATLAB

Copyright Researcher II 2022