Multichannel nonnegative matrix factorization in convolutive mixtures for audio source separation

View Researcher II's Other Codes

Disclaimer: “The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).”

Please contact us in case of a broken link from here

Authors A. Ozerov & C. FĂ©votte
Journal/Conference Name IEEE Transactions on Audio, Speech and Language Processing
Paper Category
Paper Abstract We consider inference in a general data-driven object-based model of multichannel audio data, assumed generated as a possibly underdetermined convolutive mixture of source signals. We work in the short-time Fourier transform (STFT) domain, where convolution is routinely approximated as linear instantaneous mixing in each frequency band. Each source STFT is given a model inspired from nonnegative matrix factorization (NMF) with the Itakura-Saito divergence, which underlies a statistical model of superimposed Gaussian components. We address estimation of the mixing and source parameters using two methods. The first one consists of maximizing the exact joint likelihood of the multichannel data using an expectation-maximization (EM) algorithm. The second method consists of maximizing the sum of individual likelihoods of all channels using a multiplicative update algorithm inspired from NMF methodology. Our decomposition algorithms are applied to stereo audio source separation in various settings, covering blind and supervised separation, music and speech sources, synthetic instantaneous and convolutive mixtures, as well as professionally produced music recordings. Our EM method produces competitive results with respect to state-of-the-art as illustrated on two tasks from the international Signal Separation Evaluation Campaign (SiSEC 2008).
Date of publication 2010
Code Programming Language MATLAB

Copyright Researcher II 2022