mritc: A Package for MRI Tissue Classification

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Authors Dai Feng, Luke Tierney
Journal/Conference Name Journal of Statistical Software
Paper Category
Paper Abstract This paper presents an R package for magnetic resonance imaging (MRI) tissue classification. The methods include using normal mixture models, hidden Markov normal mixture models, and a higher resolution hidden Markov normal mixture model fitted by various optimization algorithms and by a Bayesian Markov chain Monte Carlo (MCMC) method. Functions to obtain initial values of parameters of normal mixture models and spatial parameters are provided. Supported input formats are ANALYZE, NIfTI, and a raw byte format. The function slices3d in misc3d is used for visualizing data and results. Various performance evaluation indices are provided to evaluate classification results. To improve performance, table lookup methods are used in several places, and vectorized computation taking advantage of conditional independence properties are used. Some computations are performed by C code, and OpenMP is used to parallelize key loops in the C code.
Date of publication 2011
Code Programming Language R

Copyright Researcher 2022