Modeling Dependence with C- and D-Vine Copulas: The R Package CDVine

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Authors Eike C. Brechmann, Ulf Schepsmeier
Journal/Conference Name Journal of Statistical Software
Paper Category
Paper Abstract Flexible multivariate distributions are needed in many areas. The popular multivariate Gaussian distribution is however very restrictive and cannot account for features like asymmetry and heavy tails. Therefore dependence modeling using copulas is nowadays very common to account for such patterns. The use of copulas is however challenging in higher dimensions, where standard multivariate copulas suffer from rather inflexible structures. Vine copulas overcome such limitations and are able to model complex dependency patterns by benefiting from the rich variety of bivariate copulas as building blocks. This article presents the R package CDVine which provides functions and tools for statistical inference of canonical vine (C-vine) and D-vine copulas. It contains tools for bivariate exploratory data analysis and for bivariate copula selection as well as for selection of pair-copula families in a vine. Models can be estimated either sequentially or by joint maximum likelihood estimation. Sampling algorithms and graphical methods are also included.
Date of publication 2013
Code Programming Language R

Copyright Researcher 2022