Model-based SIR for dimension reduction

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Authors Luca Scrucca
Journal/Conference Name Computational Statistics & Data Analysis
Paper Category
Paper Abstract A new dimension reduction method based on Gaussian finite mixtures is proposed as an extension to sliced inverse regression (SIR). The model-based SIR (MSIR)1 approach allows the main limitation of SIR to be overcome, i.e., failure in the presence of regression symmetric relationships, without the need to impose further assumptions. Extensive numerical studies are presented to compare the new method with some of the most popular dimension reduction methods, such as SIR, sliced average variance estimation, principal Hessian direction, and directional regression. MSIR appears sufficiently flexible to accommodate various regression functions, and its performance is comparable with or better, particularly as sample size grows, than other available methods. Lastly, MSIR is illustrated with two real data examples about ozone concentration regression, and hand-written digit classification.
Date of publication 2011
Code Programming Language R

Copyright Researcher 2022