mmm: an R package for analyzing multivariate longitudinal data with multivariate marginal models

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Authors Özgür Asar, Özlem Ilk
Journal/Conference Name Computer Methods and Programs in Biomedicine
Paper Category
Paper Abstract Modeling multivariate longitudinal data has many challenges in terms of both statistical and computational aspects. Statistical challenges occur due to complex dependence structures. Computational challenges are due to the complex algorithms, the use of numerical methods, and potential convergence problems. Therefore, there is a lack of software for such data. This paper introduces an R package mmm prepared for marginal modeling of multivariate longitudinal data. Parameter estimations are achieved by generalized estimating equations approach. A real life data set is applied to illustrate the core features of the package, and sample R code snippets are provided. It is shown that the multivariate marginal models considered in this paper and mmm are valid for binary, continuous and count multivariate longitudinal responses.
Date of publication 2013
Code Programming Language R

Copyright Researcher 2022