M-ADDA: Unsupervised Domain Adaptation with Deep Metric Learning

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Issam Laradji, Reza Babanezhad
Journal/Conference Name Domain Adaptation for Visual Understanding
Paper Category
Paper Abstract Unsupervised domain adaptation techniques have been successful for a wide range of problems where supervised labels are limited. The task is to classify an unlabeled `target' dataset by leveraging a labeled `source' dataset that comes from a slightly similar distribution. We propose metric-based adversarial discriminative domain adaptation (M-ADDA) which performs two main steps. First, it uses a metric learning approach to train the source model on the source dataset by optimizing the triplet loss function. This results in clusters where embeddings of the same label are close to each other and those with different labels are far from one another. Next, it uses the adversarial approach (as that used in ADDA \cite{2017arXiv170205464T}) to make the extracted features from the source and target datasets indistinguishable. Simultaneously, we optimize a novel loss function that encourages the target dataset's embeddings to form clusters. While ADDA and M-ADDA use similar architectures, we show that M-ADDA performs significantly better on the digits adaptation datasets of MNIST and USPS. This suggests that using metric-learning for domain adaptation can lead to large improvements in classification accuracy for the domain adaptation task. The code is available at \url{https//github.com/IssamLaradji/M-ADDA}.
Date of publication 2018
Code Programming Language Python
Comment

Copyright Researcher 2022