Log-Euclidean Kernels for Sparse Representation and Dictionary Learning

View Researcher's Other Codes

MATLAB code for the paper: “Log-Euclidean Kernels for Sparse Representation and Dictionary Learning”.

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Peihua Li, Qilong Wang, Wangmeng Zuo and Lei Zhang
Journal/Conference Name 2013 International Conference on Computer Vision (ICCV 2013)
Paper Category
Paper Abstract The symmetric positive definite (SPD) matrices have been widely used in image and vision problems. Recently there are growing interests in studying sparse representation (SR) of SPD matrices, motivated by the great success of SR for vector data. Though the space of SPD matrices is well-known to form a Lie group that is a Riemannian manifold, existing work fails to take full advantage of its geometric structure. This paper attempts to tackle this problem by proposing a kernel based method for SR and dictionary learning (DL) of SPD matrices. We disclose that the space of SPD matrices, with the operations of logarithmic multiplication and scalar logarithmic multiplication defined in the Log-Euclidean framework, is a complete inner product space. We can thus develop a broad family of kernels that satisfies Mercer's condition. These kernels characterize the geodesic distance and can be computed efficiently. We also consider the geometric structure in the DL process by updating atom matrices in the Riemannian space instead of in the Euclidean space. The proposed method is evaluated with various vision problems and shows notable performance gains over state-of-the-arts.
Date of publication 2013
Code Programming Language MATLAB

Copyright Researcher 2022