Linear Quantile Mixed Models: The lqmm Package for Laplace Quantile Regression
View Researcher's Other CodesDisclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).
Authors | Marco Geraci |
Journal/Conference Name | Journal of Statistical Software |
Paper Category | Other |
Paper Abstract | Inference in quantile analysis has received considerable attention in the recent years. Linear quantile mixed models (Geraci and Bottai 2014) represent a flexible statistical tool to analyze data from sampling designs such as multilevel, spatial, panel or longitudinal, which induce some form of clustering. In this paper, I will show how to estimate conditional quantile functions with random effects using the R package lqmm. Modeling, estimation and inference are discussed in detail using a real data example. A thorough description of the optimization algorithms is also provided. |
Date of publication | 2014 |
Code Programming Language | R |
Comment |