LARF: Instrumental Variable Estimation of Causal Effects through Local Average Response Functions

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Authors Weihua An, Xuefu Wang
Journal/Conference Name Journal of Statistical Software
Paper Category
Paper Abstract LARF is an R package that provides instrumental variable estimation of treatment effects when both the endogenous treatment and its instrument (i.e., the treatment inducement) are binary. The method (Abadie 2003) involves two steps. First, pseudo-weights are constructed from the probability of receiving the treatment inducement. By default LARF estimates the probability by a probit regression. It also provides semiparametric power series estimation of the probability and allows users to employ other external methods to estimate the probability. Second, the pseudo-weights are used to estimate the local average response function conditional on treatment and covariates. LARF provides both least squares and maximum likelihood estimates of the conditional treatment effects.
Date of publication 2016
Code Programming Language R

Copyright Researcher 2022