Joint CSIT acquisition based on low-rank matrix completion for FDD massive MIMO systems

View Researcher II's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Authors Wenqian Shen, Linglong Dai, Byonghyo Shim, Shahid Mumtaz, Zhaocheng Wang
Journal/Conference Name IEEE Communications Letters
Paper Category
Paper Abstract Channel state information at the transmitter (CSIT) is essential for frequency-division duplexing (FDD) massive MIMO systems, but conventional solutions involve overwhelming overhead both for downlink channel training and uplink channel feedback. In this letter, we propose a joint CSIT acquisition scheme to reduce the overhead. Particularly, unlike conventional schemes where each user individually estimates its own channel and then feed it back to the base station (BS), we propose that all scheduled users directly feed back the pilot observation to the BS, and then joint CSIT recovery can be realized at the BS. We further formulate the joint CSIT recovery problem as a low-rank matrix completion problem by utilizing the low-rank property of the massive MIMO channel matrix, which is caused by the correlation among users. Finally, we propose a hybrid low-rank matrix completion algorithm based on the singular value projection to solve this problem. Simulations demonstrate that the proposed scheme can provide accurate CSIT with lower overhead than conventional schemes.
Date of publication 2015
Code Programming Language MATLAB

Copyright Researcher II 2022