Inferring Concept Prerequisite Relations from Online Educational Resources
View Researcher's Other CodesDisclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).
Please contact us in case of a broken link from here
Authors | Sheril Lawrence, Sudeshna Roy, Vaibhav Rajan, Meghana Madhyastha |
Journal/Conference Name | 33rd AAAI Conference on Artificial Intelligence, AAAI 2019, 31st Innovative Applications of Artificial Intelligence Conference, IAAI 2019 and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019 |
Paper Category | Artificial Intelligence |
Paper Abstract | The Internet has rich and rapidly increasing sources of high quality educational content. Inferring prerequisite relations between educational concepts is required for modern large-scale online educational technology applications such as personalized recommendations and automatic curriculum creation. We present PREREQ, a new supervised learning method for inferring concept prerequisite relations. PREREQ is designed using latent representations of concepts obtained from the Pairwise Latent Dirichlet Allocation model, and a neural network based on the Siamese network architecture. PREREQ can learn unknown concept prerequisites from course prerequisites and labeled concept prerequisite data. It outperforms state-of-the-art approaches on benchmark datasets and can effectively learn from very less training data. PREREQ can also use unlabeled video playlists, a steadily growing source of training data, to learn concept prerequisites, thus obviating the need for manual annotation of course prerequisites. |
Date of publication | 2018 |
Code Programming Language | C |
Comment |