Improved Subset Autoregression: With R Package

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Authors A. Ian McLeod, Ying Zhang
Journal/Conference Name Journal of Statistical Software
Paper Category
Paper Abstract The FitAR R (R Development Core Team 2008) package that is available on the Comprehensive R Archive Network is described. This package provides a comprehensive approach to fitting autoregressive and subset autoregressive time series. For long time series with complicated autocorrelation behavior, such as the monthly sunspot numbers, subset autoregression may prove more feasible and/or parsimonious than using AR or ARMA models. The two principal functions in this package are SelectModel and FitAR for automatic model selection and model fitting respectively. In addition to the regular autoregressive model and the usual subset autoregressive models (Tong'77), these functions implement a new family of models. This new family of subset autoregressive models is obtained by using the partial autocorrelations as parameters and then selecting a subset of these parameters. Further properties and results for these models are discussed in McLeod and Zhang (2006). The advantages of this approach are that not only is an efficient algorithm for exact maximum likelihood implemented but that efficient methods are derived for selecting high-order subset models that may occur in massive datasets containing long time series. A new improved extended {BIC} criterion, {UBIC}, developed by Chen and Chen (2008) is implemented for subset model selection. A complete suite of model building functions for each of the three types of autoregressive models described above are included in the package. The package includes functions for time series plots, diagnostic testing and plotting, bootstrapping, simulation, forecasting, Box-Cox analysis, spectral density estimation and other useful time series procedures. As well as methods for standard generic functions including print, plot, predict and others, some new generic functions and methods are supplied that make it easier to work with the output from FitAR for bootstrapping, simulation, spectral density estimation and Box-Cox analysis.
Date of publication 2008
Code Programming Language R

Copyright Researcher 2022