Identifying Quantitative Trait Loci via Group-Sparse Multi-Task Regression and Feature Selection: An Imaging Genetics Study of the ADNI Cohort

View Researcher II's Other Codes

Disclaimer: “The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).”

Please contact us in case of a broken link from here

Authors Hua Wang, Feiping Nie, Heng Huang, Sungeun Kim, Kwangsik Nho, Shannon Risacher, Andrew J Saykin, Li Shen, ADNI
Journal/Conference Name Bioinformatics
Paper Category
Paper Abstract MOTIVATION: Recent advances in high-throughput genotyping and brain imaging techniques enable new approaches to study the influence of genetic variation on brain structures and functions. Traditional association studies typically employ independent and pairwise univariate analysis, which treats single nucleotide polymorphisms (SNPs) and quantitative traits (QTs) as isolated units and ignores important underlying interacting relationships between the units. New methods are proposed here to overcome this limitation. RESULTS: Taking into account the interlinked structure within and between SNPs and imaging QTs, we propose a novel Group-Sparse Multi-task Regression and Feature Selection (G-SMuRFS) method to identify quantitative trait loci for multiple disease-relevant QTs and apply it to a study in mild cognitive impairment and Alzheimer's disease. Built upon regression analysis, our model uses a new form of regularization, group ℓ(2,1)-norm (G(2,1)-norm), to incorporate the biological group structures among SNPs induced from their genetic arrangement. The new G(2,1)-norm considers the regression coefficients of all the SNPs in each group with respect to all the QTs together and enforces sparsity at the group level. In addition, an ℓ(2,1)-norm regularization is utilized to couple feature selection across multiple tasks to make use of the shared underlying mechanism among different brain regions. The effectiveness of the proposed method is demonstrated by both clearly improved prediction performance in empirical evaluations and a compact set of selected SNP predictors relevant to the imaging QTs
Date of publication 2012
Code Programming Language MATLAB

Copyright Researcher II 2022