Graph-Regularized Saliency Detection With Convex-Hull-Based Center Prior

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Authors Chuan Yang, Lihe Zhang, Huchuan Lu
Journal/Conference Name IEEE Signal Processing Letters
Paper Category
Paper Abstract Object level saliency detection is useful for many content-based computer vision tasks. In this letter, we present a novel bottom-up salient object detection approach by exploiting contrast, center and smoothness priors. First, we compute an initial saliency map using contrast and center priors. Unlike most existing center prior based methods, we apply the convex hull of interest points to estimate the center of the salient object rather than directly use the image center. This strategy makes the saliency result more robust to the location of objects. Second, we refine the initial saliency map through minimizing a continuous pairwise saliency energy function with graph regularization which encourages adjacent pixels or segments to take the similar saliency value (i.e., smoothness prior). The smoothness prior enables the proposed method to uniformly highlight the salient object and simultaneously suppress the background effectively. Extensive experiments on a large dataset demonstrate that the proposed method performs favorably against the state-of-the-art methods in terms of accuracy and efficiency.
Date of publication 2013
Code Programming Language MATLAB

Copyright Researcher 2022