GPareto: An R Package for Gaussian-Process-Based Multi-Objective Optimization and Analysis

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Authors Mickaƫl Binois, Victor Picheny
Journal/Conference Name Journal of Statistical Software
Paper Category
Paper Abstract The GPareto package for R provides multi-objective optimization algorithms for expensive black-box functions and an ensemble of dedicated uncertainty quantification methods. Popular methods such as efficient global optimization in the mono-objective case rely on Gaussian processes or kriging to build surrogate models. Driven by the prediction uncertainty given by these models, several infill criteria have also been proposed in a multi-objective setup to select new points sequentially and efficiently cope with severely limited evaluation budgets. They are implemented in the package, in addition with Pareto front estimation and uncertainty quantification visualization in the design and objective spaces. Finally, it attempts to fill the gap between expert use of the corresponding methods and user-friendliness, where many efforts have been put on providing graphical postprocessing, standard tuning and interactivity.
Date of publication 2019
Code Programming Language R

Copyright Researcher 2022