Frequency-selective Vandermonde decomposition of Toeplitz matrices with applications

View Researcher II's Other Codes

Disclaimer: “The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).”

Please contact us in case of a broken link from here

Authors Z. Yang and L. Xie
Journal/Conference Name Signal Processing
Paper Category
Paper Abstract The classical result of Vandermonde decomposition of positive semidefinite Toeplitz matrices, which dates back to the early twentieth century, forms the basis of modern subspace and recent atomic norm methods for frequency estimation. In this paper, we study the Vandermonde decomposition in which the frequencies are restricted to lie in a given interval, referred to as frequency-selective Vandermonde decomposition. The existence and uniqueness of the decomposition are studied under explicit conditions on the Toeplitz matrix. The new result is connected by duality to the positive real lemma for trigonometric polynomials nonnegative on the same frequency interval. Its applications in the theory of moments and line spectral estimation are illustrated. In particular, it provides a solution to the truncated trigonometric K-moment problem. It is used to derive a primal semidefinite program formulation of the frequency-selective atomic norm in which the frequencies are known {\em a priori} to lie in certain frequency bands. Numerical examples are also provided.
Date of publication 2018
Code Programming Language MATLAB

Copyright Researcher II 2022