Feature Selection with the Boruta Package

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Authors Miron B. Kursa, Witold R. Rudnicki
Journal/Conference Name Journal of Statistical Software
Paper Category
Paper Abstract This article describes a R package Boruta, implementing a novel feature selection algorithm for finding emph{all relevant variables}. The algorithm is designed as a wrapper around a Random Forest classification algorithm. It iteratively removes the features which are proved by a statistical test to be less relevant than random probes. The Boruta package provides a convenient interface to the algorithm. The short description of the algorithm and examples of its application are presented.
Date of publication 2010
Code Programming Language R

Copyright Researcher 2022