Feature Preserving and Uniformity-Controllable Point Cloud Simplification on Graph
View Researcher's Other CodesDisclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).
Please contact us in case of a broken link from here
Authors | Junkun Qi, Wei Hu, Zongming Guo |
Journal/Conference Name | 2019 IEEE International Conference on Multimedia and Expo (ICME) |
Paper Category | Signal Processing |
Paper Abstract | With the development of 3D sensing technologies, point clouds have attracted increasing attention in a variety of applications for 3D object representation, such as autonomous driving, 3D immersive tele-presence and heritage reconstruction. However, it is challenging to process large-scale point clouds in terms of both computation time and storage due to the tremendous amounts of data. Hence, we propose a point cloud simplification algorithm, aiming to strike a balance between preserving sharp features and keeping uniform density during resampling. In particular, leveraging on graph spectral processing, we represent irregular point clouds naturally on graphs, and propose concise formulations of feature preservation and density uniformity based on graph filters. The problem of point cloud simplification is finally formulated as a trade-off between the two factors and efficiently solved by our proposed algorithm. Experimental results demonstrate the superiority of our method, as well as its efficient application in point cloud registration. |
Date of publication | 2019 |
Code Programming Language | MATLAB |
Comment |