Faster independent component analysis by preconditioning with Hessian approximations
View Researcher's Other CodesDisclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).
Please contact us in case of a broken link from here
Authors | Pierre Ablin, Jean-Francois Cardoso, Alexandre Gramfort |
Journal/Conference Name | IEEE Transactions on Signal Processing |
Paper Category | Signal Processing |
Paper Abstract | Independent Component Analysis (ICA) is a technique for unsupervised exploration of multi-channel data that is widely used in observational sciences. In its classic form, ICA relies on modeling the data as linear mixtures of non-Gaussian independent sources. The maximization of the corresponding likelihood is a challenging problem if it has to be completed quickly and accurately on large sets of real data. We introduce the Preconditioned ICA for Real Data (Picard) algorithm, which is a relative L-BFGS algorithm preconditioned with sparse Hessian approximations. Extensive numerical comparisons to several algorithms of the same class demonstrate the superior performance of the proposed technique, especially on real data, for which the ICA model does not necessarily hold. |
Date of publication | 2018 |
Code Programming Language | Python |
Comment |