Fast Discrete Distribution Clustering Using Wasserstein Barycenter with Sparse Support
View Researcher's Other CodesDisclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).
Please contact us in case of a broken link from here
Authors | James Z. Wang, Jia Li, Panruo Wu, Jianbo Ye |
Journal/Conference Name | IEEE Transactions on Signal Processing |
Paper Category | Artificial Intelligence |
Paper Abstract | In a variety of research areas, the weighted bag of vectors and the histogram are widely used descriptors for complex objects. Both can be expressed as discrete distributions. D2-clustering pursues the minimum total within-cluster variation for a set of discrete distributions subject to the Kantorovich-Wasserstein metric. D2-clustering has a severe scalability issue, the bottleneck being the computation of a centroid distribution, called Wasserstein barycenter, that minimizes its sum of squared distances to the cluster members. In this paper, we develop a modified Bregman ADMM approach for computing the approximate discrete Wasserstein barycenter of large clusters. In the case when the support points of the barycenters are unknown and have low cardinality, our method achieves high accuracy empirically at a much reduced computational cost. The strengths and weaknesses of our method and its alternatives are examined through experiments, and we recommend scenarios for their respective usage. Moreover, we develop both serial and parallelized versions of the algorithm. By experimenting with large-scale data, we demonstrate the computational efficiency of the new methods and investigate their convergence properties and numerical stability. The clustering results obtained on several datasets in different domains are highly competitive in comparison with some widely used methods in the corresponding areas. |
Date of publication | 2015 |
Code Programming Language | Multiple |
Comment |