Estimation of quantile mixtures via L-moments and trimmed L-moments

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Authors Juha Karvanen
Journal/Conference Name Computational Statistics & Data Analysis
Paper Category
Paper Abstract Moments or cumulants have been traditionally used to characterize a probability distribution or an observed data set. Recently, L-moments and trimmed L-moments have been noticed as appealing alternatives to the conventional moments. This paper promotes the use of L-moments proposing new parametric families of distributions that can be estimated by the method of L-moments. The theoretical L-moments are defined by the quantile function i.e. the inverse of cumulative distribution function. An approach for constructing parametric families from quantile functions is presented. Because of the analogy to mixtures of densities, this class of parametric families is called quantile mixtures. The method of L-moments is a natural way to estimate the parameters of quantile mixtures. As an example, two parametric families are introduced: the normal-polynomial quantile mixture and the Cauchy-polynomial quantile mixture. The proposed quantile mixtures are applied to model monthly, weekly and daily returns of some major stock indexes.
Date of publication 2006
Code Programming Language R

Copyright Researcher 2022