Escaping the evolutionary trap? Sex chromosome turnover in basilisks and related lizards (Corytophanidae: Squamata)

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Stuart V. Nielsen , Irán Andira Guzmán-Méndez , Tony Gamble , Madison Blumer , Brendan J. Pinto , Lukáš Kratochvíl, Michail Rovatsos
Journal/Conference Name Molecular Biology and Evolution
Paper Category , ,
Paper Abstract Most pleurodont lizard families (anoles, iguanas and their relatives), with the exception of the basilisks and casquehead lizards (family Corytophanidae), share homologous XX/XY sex chromosomes, syntenic with chicken chromosome 15. Here, we used a suite of methods (i.e. RADseq, RNAseq and qPCR) to identify corytophanid sex chromosomes for the first time. We reveal that all examined corytophanid species have partially degenerated XX/XY sex chromosomes, syntenic with chicken chromosome 17. Transcriptomic analyses showed that the expression of X-linked genes in the corytophanid, Basiliscus vittatus, is not balanced between the sexes, which is rather exceptional under male heterogamety, and unlike the dosage-balanced sex chromosomes in other well-studied XX/XY systems, including the green anole, Anolis carolinensis. Corytophanid sex chromosomes may represent a rare example of a turnover away from stable, differentiated sex chromosomes. However, because of poor phylogenetic resolution among pleurodont families, we cannot reject the alternative hypothesis that corytophanid sex chromosomes evolved independently from an unknown ancestral system.
Date of publication 2019
Code Programming Language Python

Copyright Researcher 2022