Enhanced Universal Dependency Parsing with Second-Order Inference and Mixture of Training Data

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Kewei Tu, Yong Jiang, Xinyu Wang
Journal/Conference Name WS 2020 7
Paper Category
Paper Abstract This paper presents the system used in our submission to the \textit{IWPT 2020 Shared Task}. Our system is a graph-based parser with second-order inference. For the low-resource Tamil corpus, we specially mixed the training data of Tamil with other languages and significantly improved the performance of Tamil. Due to our misunderstanding of the submission requirements, we submitted graphs that are not connected, which makes our system only rank \textbf{6th} over 10 teams. However, after we fixed this problem, our system is 0.6 ELAS higher than the team that ranked \textbf{1st} in the official results.
Date of publication 2020
Code Programming Language Python

Copyright Researcher 2022