Diverse Image Synthesis from Semantic Layouts via Conditional IMLE

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Jitendra Malik, Tianhao Zhang, Ke Li
Journal/Conference Name ICCV 2019 10
Paper Category
Paper Abstract Most existing methods for conditional image synthesis are only able to generate a single plausible image for any given input, or at best a fixed number of plausible images. In this paper, we focus on the problem of generating images from semantic segmentation maps and present a simple new method that can generate an arbitrary number of images with diverse appearance for the same semantic layout. Unlike most existing approaches which adopt the GAN framework, our method is based on the recently introduced Implicit Maximum Likelihood Estimation (IMLE) framework. Compared to the leading approach, our method is able to generate more diverse images while producing fewer artifacts despite using the same architecture. The learned latent space also has sensible structure despite the lack of supervision that encourages such behaviour. Videos and code are available at https://people.eecs.berkeley.edu/~ke.li/projects/imle/scene_layouts/.
Date of publication 2018
Code Programming Language Python
Comment

Copyright Researcher 2022