Direct Likelihood Evaluation for the Renewal Hawkes Process

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Authors Feng Chen, Tom Stindl
Journal/Conference Name Journal of Computational and Graphical Statistics
Paper Category
Paper Abstract ABSTRACTAn interesting extension of the widely applied Hawkes self-exiting point process, the renewal Hawkes (RHawkes) process, was recently proposed by Wheatley, Filimonov, and Sornette, which has the potential to significantly widen the application domains of the self-exciting point processes. However, they claimed that computation of the likelihood of the RHawkes process requires exponential time and therefore is practically impossible. They proposed two expectation–maximization (EM) type algorithms to compute the maximum likelihood estimator (MLE) of the model parameters. Because of the fundamental role of likelihood in statistical inference, a practically feasible method for likelihood evaluation is highly desirable. In this article, we provide an algorithm that evaluates the likelihood of the RHawkes process in quadratic time, a drastic improvement from the exponential time claimed by Wheatley, Filimonov, and Sornette. We demonstrate the superior performance of the resulting MLEs of the model relati...
Date of publication 2018
Code Programming Language R

Copyright Researcher 2022