DermaKNet: Incorporating the Knowledge of Dermatologists to Convolutional Neural Networks for Skin Lesion Diagnosis

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Ivan Gonzalez-Diaz
Journal/Conference Name IEEE Journal of Biomedical and Health Informatics
Paper Category
Paper Abstract Traditional approaches to automatic diagnosis of skin lesions consisted of classifiers working on sets of hand-crafted features, some of which modeled lesion aspects of special importance for dermatologists. Recently, the broad adoption of convolutional neural networks (CNNs) in most computer vision tasks has brought about a great leap forward in terms of performance. Nevertheless, with this performance leap, the CNN-based computer-aided diagnosis (CAD) systems have also brought a notable reduction of the useful insights provided by hand-crafted features. This paper presents DermaKNet, a CAD system based on CNNs that incorporates specific subsystems modeling properties of skin lesions that are of special interest to dermatologists aiming to improve the interpretability of its diagnosis. Our results prove that the incorporation of these subsystems not only improves the performance, but also enhances the diagnosis by providing more interpretable outputs.
Date of publication 2018
Code Programming Language Cuda

Copyright Researcher 2022