Data-Driven Crowd Simulation with Generative Adversarial Networks

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Javad Amirian, Julien Pettré, Wouter van Toll, Jean-Bernard Hayet
Journal/Conference Name ACM International Conference Proceeding Series
Paper Category
Paper Abstract This paper presents a novel data-driven crowd simulation method that can mimic the observed traffic of pedestrians in a given environment. Given a set of observed trajectories, we use a recent form of neural networks, Generative Adversarial Networks (GANs), to learn the properties of this set and generate new trajectories with similar properties. We define a way for simulated pedestrians (agents) to follow such a trajectory while handling local collision avoidance. As such, the system can generate a crowd that behaves similarly to observations, while still enabling real-time interactions between agents. Via experiments with real-world data, we show that our simulated trajectories preserve the statistical properties of their input. Our method simulates crowds in real time that resemble existing crowds, while also allowing insertion of extra agents, combination with other simulation methods, and user interaction.
Date of publication 2019
Code Programming Language Python
Comment

Copyright Researcher 2022