CovSel: An R Package for Covariate Selection When Estimating Average Causal Effects

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Authors Jenny Häggström, Emma Persson, Ingeborg Waernbaum, Xavier de Luna
Journal/Conference Name Journal of Statistical Software
Paper Category
Paper Abstract We describe the R package CovSel, which reduces the dimension of the covariate vector for the purpose of estimating an average causal effect under the unconfoundedness assumption. Covariate selection algorithms developed in De Luna, Waernbaum, and Richardson (2011) are implemented using model-free backward elimination. We show how to use the package to select minimal sets of covariates. The package can be used with continuous and discrete covariates and the user can choose between marginal co-ordinate hypothesis tests and kernel-based smoothing as model-free dimension reduction techniques.
Date of publication 2015
Code Programming Language R

Copyright Researcher 2022