Coordinate Descent Methods for the Penalized Semiparametric Additive Hazards Model
View Researcher's Other CodesDisclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).
Authors | Anders Gorst-rasmussen, Thomas H. Scheike |
Journal/Conference Name | Journal of Statistical Software |
Paper Category | Other |
Paper Abstract | For survival data with a large number of explanatory variables, lasso penalized Cox regression is a popular regularization strategy. However, a penalized Cox model may not always provide the best fit to data and can be difficult to estimate in high dimension because of its intrinsic nonlinearity. The semiparametric additive hazards model is a flexible alternative which is a natural survival analogue of the standard linear regression model. Building on this analogy, we develop a cyclic coordinate descent algorithm for fitting the lasso and elastic net penalized additive hazards model. The algorithm requires no nonlinear optimization steps and offers excellent performance and stability. An implementation is available in the R package ahaz. We demonstrate this implementation in a small timing study and in an application to real data. |
Date of publication | 2012 |
Code Programming Language | R |
Comment |