Continual Learning of Object Instances

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Mert Kilickaya, Kishan Parshotam
Journal/Conference Name IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops
Paper Category
Paper Abstract We propose continual instance learning - a method that applies the concept of continual learning to the task of distinguishing instances of the same object category. We specifically focus on the car object, and incrementally learn to distinguish car instances from each other with metric learning. We begin our paper by evaluating current techniques. Establishing that catastrophic forgetting is evident in existing methods, we then propose two remedies. Firstly, we regularise metric learning via Normalised Cross-Entropy. Secondly, we augment existing models with synthetic data transfer. Our extensive experiments on three large-scale datasets, using two different architectures for five different continual learning methods, reveal that Normalised cross-entropy and synthetic transfer leads to less forgetting in existing techniques.
Date of publication 2020
Code Programming Language Python

Copyright Researcher 2022